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Abstract. Graphical models, and in particular Bayesian networks, have
been widely used to investigate data in the biological and healthcare do-
mains. This can be attributed to the recent explosion of high-throughput
data across these domains and the importance of understanding the
causal relationships between the variables of interest. However, classic
model validation techniques for identifying significant edges rely on the
choice of an ad-hoc threshold, which is non-trivial and can have a pro-
nounced impact on the conclusions of the analysis.
In this paper, we overcome this limitation by proposing simple, statistically-
motivated approach based on L1 approximation for identifying significant
edges. The effectiveness of the proposed approach is demonstrated on
gene expression data sets across two published experimental studies.
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1 Introduction and Background

Graphical models [18, 28] are a class of statistical models which combine the
rigour of a probabilistic approach with the intuitive representation of relation-
ships given by graphs. They are composed by a set X = {X1, X2, . . . , Xn} of
random variables describing the quantities of interest and a graph G = (V, E)
in which each vertex v ∈ V is associated with one of the random variables in
X . The edges e ∈ E are used to express the dependence relationships among
the variables in X. The set of these relationships is often referred to as the
dependence structure of the graph. Different classes of graphs express these re-
lationships with different semantics, which have in common the principle that
graphical separation of two vertices implies the conditional independence of the
corresponding random variables [28]. The two examples most commonly found
in literature are Markov networks [8, 35], which use undirected graphs, and
Bayesian networks [20, 26], which use directed acyclic graphs.

In principle, there are many possible choices for the joint distribution of X,
depending on the nature of the data and the aims of the analysis. However,
literature have focused mostly on two cases: the discrete case [14, 35], in which
both X and the Xi are multinomial random variables, and the continuous case

[13, 35], in which X is multivariate normal and the Xi are univariate normal



random variables. In the former, the parameters of interest are the conditional

probabilities associated with each variable, usually represented as conditional
probability tables; in the latter, the parameters of interest are the partial corre-

lation coefficients between each variable and its neighbours in G.

The estimation of the structure of the graph G is called structure learning

[8, 18], and consists in finding the graph structure that encodes the conditional
independencies present in the data. Ideally it should coincide with the depen-
dence structure of X, or it should at least identify a distribution as close as
possible to the correct one in the probability space. Several algorithms have
been presented in literature for this problem, thanks to the application of many
results from probability, information and optimisation theory. Despite differ-
ences in theoretical backgrounds and terminology, they can all be traced to only
three approaches: constraint-based (which are based on conditional independence
tests), score-based (which are based on goodness-of-fit scores) and hybrid (which
combine the previous two approaches). For some examples see Bromberg et al.
[1], Castelo and Roverato [2], Friedman et al. [12], Larrañaga et al. [21] and
Tsamardinos et al. [34].

On the other hand, model validation techniques have not been developed
at a similar pace. For example, the characteristics of structure learning algo-
rithms are still studied using a small number of reference data sets [10, 24] as
benchmarks, and differences from the true (known) structure are measured with
purely descriptive measures such as Hamming distance [17]. This approach is
clearly not possible when validating networks learned from real world data sets
(because the true structure of their probability distribution is not known) and
presents some limits even for synthetic data.

A more systematic approach to model validation, and in particular to the
problem of identifying statistically significant features in a network, has been
developed by Friedman et al. [11] using bootstrap resampling [9] and model
averaging [5]. It can be summarised as follows:

1. For b = 1, 2, . . . ,m:

(a) sample a new data set X∗
b from the original data X using either para-

metric or nonparametric bootstrap;

(b) learn a the structure of the graphical model Gb = (V, Eb) from X∗
b .

2. Estimate the probability that each possible edge ei, i = 1, . . . , k is present
in the true network structure G0 = (V, E0) as

P̂(ei) =
1

m

m
∑

b=1

1l{ei∈Eb}, (1)

where 1l{ei∈Eb} is the indicator function of the event {ei ∈ Eb} (i.e., it is
equal to 1 if ei ∈ Eb and 0 otherwise).

The empirical probabilities P̂(ei) are known as edge intensities or arc strengths,
and can be interpreted as the degree of confidence that ei is present in the



network structure G0 describing the true dependence structure of X 3. However,
they are difficult to evaluate, because the probability distribution of the networks
Gb in the space of the network structures is unknown. As a result, the value of
the confidence threshold (i.e. the minimum degree of confidence for an edge to
be significant and therefore accepted as an edge of G0) is an unknown function
of both the data and the structure learning algorithm. This has proved to be
a serious limitation in the identification of significant edges and has led to the
use of ad-hoc, pre-defined thresholds in spite of the impact on model validation
evidenced by several studies [11, 15]. An exception is Nagarajan et al. [25], whose
approach will be discussed below.

Apart from this limitation, Friedman’s approach is very general and can be
used in a wide range of settings. First of all, it can be applied to any kind of
graphical model with only minor adjustments (for example, accounting for the
direction of the edges in Bayesian networks). Furthermore, it does not require
any distributional assumption on the data in addition to the ones needed to by
the structure learning algorithm. No assumption is made on the latter, either,
so any score-based, constraint-based or hybrid algorithm can be used.

In this paper, we propose a statistically-motivated estimator for the confi-
dence threshold minimising the L1 norm between the cumulative distribution
function of the observed confidence levels and the cumulative distribution func-
tion of the confidence levels of the unknown network G0. Subsequently, we demon-
strate the effectiveness of the proposed approach by re-investigating two exper-
imental data sets from Nagarajan et al. [25] and Sachs et al. [30].

2 Selecting Significant Edges

Consider the empirical probabilities P̂(ei) defined in Eq. 1, and denote them
with p̂ = {p̂i, i = 1, . . . , k}. For a graph of size n, k = n(n− 1)/2. Furthermore,
consider the order statistic

p̂(·) = {0 6 p̂(1) 6 p̂(2) 6 . . . 6 p̂(k) 6 1} (2)

derived from p̂. It is intuitively clear that the first elements of p̂(·) are more likely
to be associated with non-significant edges, and that the last elements of p̂(·)

are more likely to be associated with significant edges. The ideal configuration
p̃(·) of p̂(·) would be

p̃(i) =

{

1 if e(i) ∈ E0

0 otherwise
, (3)

that is the set of probabilities that characterises any edge as either significant
or non-significant without any uncertainty. In other words,

p̃(·) = {0, . . . , 0, 1, . . . , 1}. (4)

3 The probabilities P̂(ei) are in fact an estimator of the expected value of the {0, 1}
random vector describing the presence of each possible edge in G0. As such, they do
not sum to one and are dependent on one another in a nontrivial way.
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Fig. 1. The empirical cumulative distribution function Fp̂(·)
(left), the cumulative dis-

tribution function Fp̃(·)
(centre) and the L1 norm between the two (right).

Such a configuration arises from the limit case in which all the networks Gb

have exactly the same structure. This may happen in practise with a consistent
structure learning algorithm when the sample size is large [4, 22].

A useful characterisation of p̂(·) and p̃(·) can be obtained through the empir-
ical cumulative distribution functions of the respective elements,

Fp̂(·)
(x) =

1

k

k
∑

i=1

1l{p̂(i)<x} (5)

and

Fp̃(·)
(x) =











0 if x ∈ (−∞, 0)

t if x ∈ [0, 1)

1 if x ∈ [1,+∞)

. (6)

In particular, t corresponds to the fraction of elements of p̃(·) equal to zero and
is a measure of the fraction of non-significant edges. At the same time, t provides
a threshold for separating the elements of p̃(·), namely

e(i) ∈ E0 ⇐⇒ p̂(i) > F−1
p̃(·)

(t). (7)

More importantly, estimating t from data provides a statistically motivated
threshold for separating significant edges from non-significant ones. In practise,
this amounts to approximating the ideal, asymptotic empirical cumulative distri-
bution function Fp̃(·)

with its finite sample estimate Fp̂(·)
. Such an approximation

can be computed in many different ways, depending on the norm used to mea-
sure the distance between Fp̂(·)

and Fp̃(·)
as a function of t. Common choices are

the Lp family of norms [19], which includes the Euclidean norm, and Csiszar’s
f -divergences [7], which include Kullback-Leibler divergence.



The L1 norm

L1

(

t; p̂(·)

)

=

∫

∣

∣Fp̂(·)
(x)− Fp̃(·)

(x; t)
∣

∣ dx (8)

appears to be particularly suited to this problem; an example is shown in Fig.
1. First of all, note that Fp̂(·)

is piecewise constant, changing value only at the
points p̂(i); this descends from the definition of empirical cumulative distribution
function. Therefore, for the problem at hand Eq. 8 simplifies to

L1

(

t; p̂(·)

)

=
∑

xi∈{{0}∪p̂(·)∪{1}}

∣

∣Fp̂(·)
(xi)− t

∣

∣ (xi+1 − xi), (9)

which can be computed in linear time from p̂(·). Its minimisation is also straight-
forward using linear programming [27]. Furthermore, compared to the more com-
mon L2 norm

L2

(

t; p̂(·)

)

=

∫

[

Fp̂(·)
(x)− Fp̃(·)

(x; t)
]2

dx (10)

or the L∞ norm

L∞

(

t; p̂(·)

)

= max
x∈[0,1]

{
∣

∣Fp̂(·)
(x)− Fp̃(·)

(x; t)
∣

∣

}

, (11)

the L1 norm does not place as much weight on large deviations, making it robust
against a wide variety of configurations of p̂(·).

Then the identification of significant edges can be thought of either as a least

absolute deviations estimation or an L1 approximation of the form

t̂ = argmin
t∈[0,1]

L1

(

t; p̂(·)

)

(12)

followed by the application of the following rule:

e(i) ∈ E0 ⇐⇒ p̂(i) > F−1
p̃(·)

(t̂). (13)

A simple example of its use is illustrated below.

Example 1. Consider a graphical model based on an undirected graph G with
vertex set V = {A,B,C,D}. The set of possible edges of G contains 6 elements:
(A,B), (A,C), (A,D), (B,C), (B,D) and (C,D). Suppose that that we have
estimated the following confidence values:

p̂AB = 0.2242, p̂AC = 0.0460, p̂AD = 0.8935, (14)

p̂BC = 0.3921, p̂BD = 0.7689, p̂CD = 0.9439. (15)
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Fig. 2. The cumulative distribution functions Fp̂(·)
and Fp̃(·)

(t̂), respectively in black

and grey (left), and the L1

(

t; p̂(·)

)

norm (right) from Example 1.

Then p̂(·) = {0.0460, 0.2242, 0.3921, 0.7689, 0.8935, 0.9439} and

Fp̂(·)
(x) =















































































0 if x ∈ (−∞, 0.0460)

1

6
if x ∈ [0.0460, 0.2242)

2

6
if x ∈ [0.2242, 0.3921)

3

6
if x ∈ [0.3921, 0.7689)

4

6
if x ∈ [0.7689, 0.8935)

5

6
if x ∈ [0.8935, 0.9439)

1 if x ∈ [0.9439,+∞)

. (16)

The L1 norm takes the form

L1

(

t; p̂(·)

)

= |0− t|(0.0460− 0) +

∣

∣

∣

∣

1

6
− t

∣

∣

∣

∣

(0.2242− 0.0460)+

∣

∣

∣

∣

2

6
− t

∣

∣

∣

∣

(0.3921− 0.2242) +

∣

∣

∣

∣

3

6
− t

∣

∣

∣

∣

(0.7689− 0.3921)+

∣

∣

∣

∣

4

6
− t

∣

∣

∣

∣

(0.8935− 0.7689) +

∣

∣

∣

∣

5

6
− t

∣

∣

∣

∣

(0.9439− 0.8935)+

|1− t| (1− 0.9439) (17)

and is minimised for t̂ = 0.4999816. Therefore, an edge is deemed significant if
its confidence is strictly greater than F−1

p̃(·)
(0.4999816) = 0.3921, or, equivalently,

if it has confidence of at least 0.7689; only (A,D), (B,D) and (C,D) satisfy this
condition.



3 Applications to Gene Expression Profiles

We will now examine the effectiveness of the proposed estimator for the signifi-
cance threshold on two gene expression data sets from Nagarajan et al. [25] and
Sachs et al. [30]. All the analyses will be performed with the bnlearn package
[31, 32] for R [29], which implements several methods for structure learning,
parameter estimation and inference on Bayesian networks. Following Imoto et
al. [16], we will consider the edges of the Bayesian networks disregarding their
direction. Edges identified as significant will be oriented according to the direc-
tion observed with the highest frequency in the bootstrapped networks Gb. This
combined approach allows the proposed estimator to handle the edges whose
direction cannot be determined by the structure learning algorithm (which are
called score equivalent edges [3]), because directions are completely ignored in
the estimation. At the same time, it can be observed that in practise the two
possible orientations of such edges usually appear with comparable frequencies
in the networks Gb . Therefore, proper interpretation of their meaning in the net-
work structure resulting from the application of the approach outlined in Sec. 2
is possible.

3.1 Differentiation Potential of Aged Myogenic Progenitors

In a recent study [25] the interplay between crucial myogenic (Myogenin, Myf-
5, Myo-D1), adipogenic (C/EBPα, DDIT3, FoxC2, PPARγ), and Wnt-related
genes (Lrp5, Wnt5a) orchestrating aged myogenic progenitor differentiation was
investigated by Nagarajan et al. using clonal gene expression profiles in conjunc-
tion with Bayesian network structure learning techniques. The objective was to
investigate possible functional relationships between these diverse differentiation
programs reflected by the edges in the resulting networks. The clonal expression
profiles were generated from RNA isolated across 34 clones of myogenic pro-
genitors obtained across 24-month-old mice and real-time RT-PCR was used to
quantify the gene expression. Such an approach implicitly accommodates inher-
ent uncertainty in gene expression profiles and justified the choice of probabilistic
models.

In the same study, the authors proposed a non-parametric resampling ap-
proach to identify significant functional relationships. Starting from Friedman’s
definition of confidence levels (Eq. 1), they computed the noise floor distribu-

tion f̂ = {f̂1, f̂2, . . . , f̂k} of the edges by randomly permuting the expression of
each gene and performing Bayesian network structure learning on the result-
ing data sets. An edge ei was deemed significant if p̂i > max(f̂). In addition
to revealing several functional relationships documented in literature, the study
also revealed new relationships that were immune to the choice of the structure
learning techniques. These results were established across clonal expression data
normalised using three different housekeeping genes and networks learned with
three different structure learning algorithms.

The approach presented in [25] has two important limitations. First, the
computational cost of generating the noise floor distribution may discourage its
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Fig. 3. The empirical cumulative distribution function Fp̂(·)
for the myogenic progen-

itors data from Nagarajan et al. [25] (on the left), and the network structure resulting
from the selection of the significant edges (on the right). The vertical dashed line in
the plot of Fp̂(·)

represents the threshold F−1
p̃(·)

(t̂).

application to large data sets. In fact, the generation of the required permu-
tations of the data and the subsequent structure learning (in addition to the
bootstrap resampling and the subsequent learning required for the estimation
of p̂) essentially doubles the computational complexity of Friedman’s approach.
Second, a large sample size may result in an extremely low value of max(f̂), and
therefore in a large number of false positives.

In the present study, we re-investigate the myogenic progenitor clonal ex-
pression data normalised using housekeeping gene GAPDH with the approach
outlined in Sec. 2 and a constraint-based learning strategy based on the Incre-
mental Association Markov Blanket (IAMB) algorithm [33]. The latter is used to
learn the Markov blanket of each vertex as a preliminary step to reduce the num-
ber of its candidate parents and children; a network structure satisfying these
constraints is then identified as in the Grow-Shrink algorithm [23]. It is impor-
tant to note that this strategy was also used in the original study [25], hence
its choice. The order statistic p̂(·) was computed from 500 bootstrap samples.
The empirical cumulative distribution function Fp̂(·)

, the estimated threshold
and the network with the significant edges are shown in Fig. 3.

All edges identified as significant in the earlier study [25] across the various
structure learning techniques and normalisations techniques were also identified
by the proposed approach (see Fig. 3D in [25]). In contrast to Fig. 3, the original
study using IAMB and normalisations with respect to GAPDH alone detected
a considerable number of additional edges (see Fig. 3A in [25]). Thus it is quite
possible that the approach proposed in this paper reduces the number of false
positives and spurious functional relationships between the genes. Furthermore,
the application of the proposed approach in conjunction with the algorithm from
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Fig. 4. The empirical cumulative distribution function of p̂(·) for the flow cytometry
data from Sachs et al. [30] (on the left), and the network structure resulting from the
selection of the significant edges (on the right). The vertical dashed line in the plot of
Fp̂(·)
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Imoto et al. [16] reveals directionality of the edges, in contrast to the undirected
network reported by Nagarajan et al. [25].

3.2 Protein Signalling in Flow Cytometry Data

In a recent study, Sachs et al. [30] used Bayesian networks as a tool for identifying
causal influences in cellular signalling networks from simultaneous measurement
of multiple phosphorylated proteins and phospholipids across single cells. The
authors used a battery of perturbations in addition to the unperturbed data to
arrive at the final network representation. A greedy search score-based algorithm
that maximises the posterior probability of the network [14] and accommodates
for variations in the joint probability distribution across the unperturbed and
perturbed data sets was used to identify the edges [6]. More importantly, signif-
icant edges were selected using an arbitrary significance threshold of 0.85 (see
Fig. 3, [30]). A detailed comparison between the learned network and functional
relationships documented in literature was presented in the same study.

We investigate the performance of the proposed approach in identifying sig-
nificant functional relationships from the same experimental data. However, we
limit ourselves to the data recorded without applying any molecular intervention,
which amount to 854 observations for 11 variables. We compare and contrast our
results to those obtained using an arbitrary threshold of 0.85. The combination
of perturbed and non-perturbed observations studied in Sachs et al. [30] cannot
be analysed with our approach, because each subset of the data follows a differ-
ent probability distribution and therefore there is no single “true” network G0.
Analysis of the unperturbed data using the approach presented in Sec. 2 reveals
the edges reported in the original study. The resulting network is shown in Fig.



4 along with Fp̂(·)
and the estimated threshold. From the plot of Fp̂(·)

we can
clearly see that significant and non-significant edges present widely different lev-
els of confidence, to the point that any threshold between 0.4 and 0.9 results in
the same network structure. This, along with the value of the estimated thresh-
old (p̂(i) > 0.93), shows that the noisiness of the data relative to the sample
size is low. In other words, the sample is big enough for the structure learning
algorithm to reliably select the significant edges. The edges identified by the pro-
posed method were the same as those identified by [30] using general stimulatory
cues excluding the data with interventions (see Fig. 4A in [30], Supplementary
Information). In contrast to [30], using Imoto et al. [16] approach in conjunction
with the proposed thresholding method we were able to identify the direction
of the edges in the network. The directionality correlated with functional rela-
tionships documented in literature (Tab. 3, [30], Supplementary Information) as
well as with the directionality of the network learned from both perturbed and
unperturbed data (Fig. 3, [30]).

4 Conclusions

Network abstractions provided by graphical models have enjoyed considerable
attention across the biological and medical communities, where they are used to
represent the concerted working as a system as opposed to independent entities.
For example, these networks may represent the underlying signalling mechanisms
and pathways within the context of biological data. Classic model validation
techniques identify significant edges using an ad-hoc threshold across multiple
realisations of networks learned from the given data. Such ad-hoc approaches
can have pronounced effect on the resulting networks and biological conclusions.
The present study overcomes this critical caveat by proposing a more straight-
forward and statistically-motivated approach for identifying significant edges in
a graphical model. The proposed estimator minimises the L1 norm between the
cumulative distribution function of the observed confidence levels and the cumu-
lative distribution function of the “edge confidence” determined from the given
data. The effectiveness of the proposed approach is demonstrated on gene ex-
pression data sets across two different studies [25, 30]. However, the approach is
defined in a more general setting and can be applied to many classes of graphical
models learned from any kind of data. A more detailed investigation is underway
in elucidating the various aspects of the proposed approach.
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