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Abstract. Bayesian methods and Bayesian networks are increasingly
popular in genetic association studies. We discuss the application of
Bayesian networks to give a detailed characterization of relevance re-
lations and their application in case of multiple outcome variables. These
global properties of the relevance relations are investigated in the Bayesian
statistical framework using a joint model, thus we can generate a coher-
ent uncertainty measure for the results without post hoc corrections.
We show the usefulness of the syntactic aggregation of the a posteriori
distributions over the relevant variable sets, which allows the examina-
tion of the most relevant variables, variable pairs, and larger subsets. We
present these methods as precursors for a unified framework of Bayesian
data analytic knowledge bases describing the results of multiple Bayesian
analysis of relevance. Concepts are demonstrated in the genetics of trait
impulsivity.

1 Introduction

Genetic association studies face many challenges such as the poor de-
scription of phenotypes, presence of population confounding, effects of life
style and environment, the seemingly non-functional nature of the factors
found, the weak effect strength of the factors (“missing heritability”), but
the most profound is the rapid increase of the number of potential predic-
tors, which manifests itself as“the multiple hypothesis testing problem” in
the frequentist framework. In response to this limit, more intensive usage
of computational resources and background knowledge became central is-
sues in biomedicine. In genetic association studies such approaches have
emerged in various contexts to cope with the relative scarcity of the data
such as the pooling of datasets in meta-analysis, pooling of the results
in ad hoc repositories and knowledge bases, and the use of computation-
intensive statistical approaches such as permutation testing, bootstrap,
and Bayesian statistics.



In the paper we present elements of a Bayesian, global relevance anal-
ysis and show their application in the probabilistic knowledge fusion re-
search direction in the following aspects:

1. Partial (strong) relevance We can infer the a posteriori probability the
k variables are jointly strongly relevant for a given outcome potentially
with further unspecificied variables.

2. Type of relevance We can infer posteriors for various types of rele-
vance, e.g. strong relevance vs. association.

3. Multi-target relevance We can infer posteriors for strong relevance
w.r.t. multiple outcome variables.

The advantages of Bayesian networks (BN) for representing global de-
pendency maps and relevance relations are well-known, but their applica-
tion was hindered in high-dimensional tasks by their high computational
and sample (statistical) complexity. Motivated by this problem we pro-
posed a Bayesian approach to the feature subset selection (FSS) problem
and proposed the use of partial relevance and multi-target relevance [2].
In this paper we extend this approach by inferring and comparing pos-
teriors for various subtypes of pairwise dependencies, such as association
and strong relevance.

First in Section 2 we overview Bayesian network based concepts of
relevance and earlier applications. In Section 3 we discuss the Bayesian
approach to FSS, particularly the main assumption of its popular condi-
tional version, which makes it different from the general, domain model
based approaches, and summarize the Stochastic Search Variable Selec-
tion (SSVS), which is one of our evaluation methods. Then in Section 4 we
overview earlier Bayesian network based methods in the Bayesian frame-
work to analyze relevance and summarize our approach. Section 5 and
Section 6 contains the results in impulsivity research and its discussion.

2 Bayesian network representation of relevance

There are many association analysis methods with different biases, advan-
tages and disadvantages w.r.t the number of variables, sample size, quality
and completeness of the data, loss function, time, and available computa-
tional resources. Thus an important point of reference is an asymptotic,
loss-free, algorithm-free probabilistic concept of relevance, the Markov
Blanket Set (MBS) [29]. It was connected to the Bayesian networks (BN),
which became a central tool for the graphical representation of dependen-
cies and optionally causation [24]. In the feature (attribute) learning con-
text related univariate concepts of relevance, strong and weak relevance



was introduced [20]. To bridge the gap between the linear cardinality
of the Markov blanket membership (MBM)s and exponential cardinality
MBSs, we introduced the concept of partial (multivariate, strong) rele-
vance (k-MBS) with scalable, intermediate polynomial cardinalities [2].

Because in our application domain the outcome variables are semanti-
cally related, we use the following acasual subtypes of relevance, which are
derived from the combinations of {causal,confounded,conditional}, and
{direct,indirect} relations and their aggregates, see Table 1 (for a causal
interpretation under the Causal Markov Assumption, see e.g. [24]).

Table 1. Graphical model based definition of types of relevances and associations.

Relation Abbreviation Graphical
Direct causal relevance DCR(X,Y) There is an edge between X and Y
Transitive causal relevance TCR(X,Y) There is directed path between X and Y
Confounded relevance ConfR(X,Y) X and Y have Common ancestor
(Pairwise) Association A DCR or TCR or ConfR
Pure interactionist relevance PIR(X,Y) X and Y have common child
Strong relevance SR(X,Y) PIR or DCR

The ordering of relations in Table 1 indicates certain ontological, and
practical aspects, but a hierarchy or ranking is problematic, because for
example the standard concept of pairwise association (A) is narrower
than strong relevance (it does not include Pure Interactionist Relevance).
Further extension of relevance is possible, if there are multiple possible
target variables Y which have to be examined together, thus we proposed
the the concept of multi-target relevance [2].

The Markov Blanket Set and the Bayesian network representation in-
duced many research direction in feature learning, in the feature subset se-
lection problem, and in genetic association studies [11, 21, 34, 16, 1, 18, 36].
Because of the high computational complexity and particularly because
of the high sample (statistical) complexity of learning complete Bayesian
network models w.r.t number of variables these “local” approaches limit
their scope, and focus on the identification of strongly relevant variables,
and possibly their interaction and causal structure. Thus global and de-
tailed characterization of relevance relations is not available. However as
we will show the Bayesian statistical framework provides a normative so-
lution for the high sample complexity and for medium sized problems
with hundreds of variables the computational complexity is managable
using high-throughput and high-performance computing resources.



3 The conditional Bayesian approaches and the SSVS

Bayesian methods are more and more popular in genetic association
studies, and one of their advantage is their principled approach to model
complexity and number of variables in case of relatively small sample
size [6]. The infamous correction for multiple hypothesis testing with fre-
quently ad hoc management - causing loss of significance and power -
manifests itself in the Bayesian framework as a normative and inherent
property, resulting in a more flat posterior for more complex models.

In the feature learning context a popular choice is the conditional
Bayesian approach, which assumes independent beliefs corresponding to
the modeling of the dependence of the output variable Y on X (i.e.,
without modeling the overall domain) [14]. Practically the conditional
approach models the conditional distribution of Y given X using a para-
metric model class S,θ as p(Y = 1|X = x, S,θ), for example using lin-
ear regression, logistic regression or multilayer perceptrons. The domain
model based approach models the joint distribution of Y,X using a para-
metric model class S,θ as p(Y,X|S,θ), for example using Bayesian net-
works. In both cases using the posterior over model structure p(S,θ|DN )
given a data set DN we can induce a posterior for the relevance of a
feature Xi and for the subset of features X′. A fundamental difference
between the conditional and domain model based approach is that in the
conditional approach the presence of a variable in the model can not be
interpreted as strong relevance (e.g. a highly predictive, but only weakly
relevant factor can be present in the conditional model, if it is strongly
associated through multiple paths, as we do not model the dependencies
between the factors).

An early Bayesian conditional approach, the Stochastic Search Vari-
able Selection puts the regression problem in a Bayesian statistical frame-
work. This approach considers submodels with subsets of the predictor
variables and estimates the a posteriori probability of the inclusion of a
predictor and its corresponding strength parameters [15]. Bayesian vari-
able selection method is based on assuming a normal prior distribution
on the regression parameters. The variance of the distribution usually is
a constant, but we can extend the model by estimating the variance as
in case of SSVS. If we estimate the variance of normal prior, it helps
tuning the parameters, because in the regression model the coefficient
depends on the variance. In a heterogeneous problem, the variance can
be set differently for all regression variables.



Other Bayesian conditional methods e.g. using logistic regression or
multilayer perceptrons, are widely used in biomedicine and in GASs (e.g.,
see [3, 27, 6, 31, 28, 35, 32, 12]). Although the conditional approach is ca-
pable for multivariate analysis including interactions, the domain model
based approach allows better characterization of both local and global
dependencies.

4 Bayesian analysis of relevance using Bayesian networks

The local “causal” discovery methods limit their scope to the strongly
relevant variables to reduce the high computational complexity and par-
ticularly the high sample (statistical) complexity of learning complete
Bayesian network models, i.e. to avoid the learning of a global and de-
tailed characterization of relevance relations [1]. However the Bayesian
statistical framework provides a normative solution for the high sample
complexity and for medium sized problems with hundreds of variables the
computational complexity is managable using high-throughput and high-
performance computing resources. Thus the BN based Bayesian approach
can ensure global, potentially causal characterization of the dependencies
and normative characterization of weakly significant results.

The Bayesian inference over structural properties of Bayesian net-
works was proposed in [7, 9]. In [22], Madigan et al. proposed a Markov
Chain Monte Carlo (MCMC) scheme to approximate such Bayesian infer-
ence. In [13], Friedman et al. reported an MCMC scheme over the space
of orderings. In [19], Koivisto et al. reported a method to perform exact
full Bayesian inference over modular features. An ad hoc randomized ap-
proach were reported in [30]. For the application of Bayesian networks in
the Bayesian framework we reported specialized ordering MCMC meth-
ods to efficiently estimate posteriors over structural model properties, par-
ticularly over Markov Blanket Graphs (MBG) (the ordering-conditional
posterior of an MBG can be computed in polynomial time, which can
be exploited in ordering-MCMC methods [4]). Based on these concepts
we proposed a Bayesian network based Bayesian multilevel analysis of
relevance (BN-BMLA), which estimates posteriors of hierarchic, interre-
lated hypotheses, e.g. for partial strong relevance for all subsets. Partial
strong relevance is particularly useful, because it defines an embedded
hypotheses space with varying complexity, i.e. sets of k predictors that
are strongly relevant [2].

The posteriors for the hierarchic, interrelated hypotheses of the BN-
BMLA methodology are estimated in a two-step process to support post-



hoc analysis. First we estimate posteriors over the MBS, MBG, and for
the pairwise relations in Table 1 for the target variables. In the second
phase we use these posteriors as a probabilistic knowledge-base to es-
timate various posteriors and discover interesting and significantly con-
firmed hypotheses. In the first phase we applied MCMCM method over
the Bayesian network structures (i.e. over directed acyclic graphs, DAGs)
without limiting the maximum number of parents. We used both the
Cooper-Herskovits (CH) and the observationally equivalent BDeu param-
eter priors with various virtual sample sizes (VSS=1,10,50,100), but from
the point of view of biomedical relevance we found that the theoretically
preferable BDeu prior is more sensitive to ”small-sample” anomalies, thus
we report results for the CH and VSS=1 setting. The structure prior was
uniform. The length of the burn-in and MC simulation is 106 and 5×106,
the probability of the DAG operators is uniform [8]. In the second step
we computed offline the k-MBS posterior values from the MBS posterior,
the posteriors over the types of the dependency relations in Table 1, and
the posteriors for multi-target relevance.

5 Results

Impulsivity or impulsiveness is a personality trait defined as a predis-
position toward rapid, unplanned reactions. We investigated a combined
set of serotonergic (HTR1A–1019 C/G, HTR1B 1997 C/G, 5-HTTLPR
in SLC6A4 gene) and dopaminergic (COMT Val158Met, DRD4 48bp
VNTR, DRD2/ANKK1 Taq A1) polymorphisms. The sample size was
561, which included only complete records from a preliminary dataset of
a larger study. The impulsivity phenotype was measured by the Hungar-
ian version of the Barratt Impulsivity Scale (BIS-11) originally published
by Patton and colleagues [23]. The instrument consists of 30 items, scored
on a four point scale. The three main impulsivity factors are: Cognitive,
Motoric, and Nonplanning impulsiveness. The total score is the sum of
all items.

To cope with multiple predictors with potentially weak effects we ap-
plied the stochastic search variable selection method (SSVS) to the geno-
types, Sex and Age data, while normalizing the scale targets. We used the
SSVS for quantile regression implementation in the MCMCpack package
[25] in R [26]. We ran the algorithm for the different scale targets with
the same parameter setting to get comparable results. We set the shape
parameters of the beta distribution to 10 and 2. We ran 100000 iterations
and 10000 for the burn-in period. Two of the predictor variables was



found significant in case of all target variables (Fig. 1). These two vari-
ables (HTR1B and DRD4) have significantly higher marginal inclusion
probability. The regression coefficients with the highest absolute value
belongs also to these two predictors HTR1B and DRD4 (Fig. 5).

A. Total score B. Motor subscale

C. Cognitive subscale D. Nonplanning subscale

Fig. 1. Marginal posterior probability for all predictors. The posterior probabilities (X
axis) for the total score (A), for the motor subscale (B), for the cognitive subscale (C)
and for the nonplanning subscale (D).

To investigate the interactions; types of the relevance of the predic-
tors; and their relevance in a joint analysis of multiple target variables we
applied the BN-BMLA method. It was applied for the 5-HTTLPR geno-
types and five other grouped genotype categories, as well as Sex, and Age.
Outcome (target) variable was the BIS Total score or the scale variables
separately and jointly. The scale variables and Age were discretized into
three bins with uniform univariate frequencies.

The identification of an overall domain model was not possible, be-
cause considerable uncertainty remained at the level of full multivariate
analysis (see Fig. 5). Therefore we computed the aggregate posterior prob-
abilities for variables, pairs of variables, and triplets of variables. Fig. 5
reports a comparative overview of peakness of the posteriors for uni-, bi-,
and trivariate partial strong multi-target relevance. It shows that DRD4
is strongly relevant (with 0.575 posterior probability), the DRD4 and
HTR1B pair is among the strongly relevant variables (with 0.251 pos-



Table 2. The regression coefficients for the predictors in case of the three subscales
and the total score

Predictors Total score Motor subscale Cognitive subscale Nonplanning subscale
Intercept -5.821e-03 -2.730e-02 0.01 -0.008

Sex 2.264e-02 4.126e-03 0.022 0.0151
Age -4.644e-05 6.403e-05 -0.0006 0.0003

DRD2 -6.593e-03 -1.093e-02 -0.016 -0.0069
DRD4 -1.074e-01 -4.822e-02 -0.09 -0.04
COMT -1.122e-02 -8.690e-03 -0.012 -0.0038

5-HTTLPR 4.721e-03 1.588e-03 -0.0045 0.006
HTR1A 4.670e-03 -5.480e-04 -0.004 0.0002
HTR1B -1.391e-01 -2.003e-01 -0.023 -0.16

terior probability). Posterior probabilities of three member variable sets
showed no marked features. The standard errors of the estimated posteri-
ors are below 0.001. Fig. 5 shows the most probable MBGs with posterior
larger than 0.001 (the width of the edges indicate their aggregate poste-
riors).

Fig. 2. The most probable Markov Blanket Graphs with posterior larger than 0.001
(the edge posteriors are indicated by their width).

We also computed the posteriors for the types of the relevance of the
predictors in Table 1. As expected it provides a useful, detailed charac-
terization, e.g. in case of DRD2 the a posteriori probability of association
between DRD2 and bisTotal is 0.4926, but its strong relevance is only
0.0219. Note that such interpretation and decomposition is not available
with SSVS.
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Fig. 3. The most probable uni-, bi-, and tri-variate subsets with decreasing multi-target
relevance.

Finally we performed a refined analysis for multiple outcomes and ap-
plied the BN-BMLA method for the three subscales separately, also for
the BIS Total score, and also jointly to compute the multi-target rele-
vance. This confirmed that HTR1B is strongly relevant for the motoric
and noplanning subscales, DRD4 has somewhat weaker, but similar mul-
tiple effect, but interestingly Comt and HTR1A is strongly relevant only
for the cognitive subscale.

6 Discussion

The applied methods (SSVS, BN-BMLA) gave similar results. Both con-
firmed that the serotonergic and dopaminergic polymorphisms affect the
trait impulsivity scores, specifically DRD4 and HTR1B. Furthermore BN-
BMLA provided a coherent characterization of the system of dependencies
and a detailed picture of the genetic background of the subscales which
makes it a promising option in genetic studies. The Bayesian network
based analysis confirmed association of DRD4 with BIS Total, moreover
it was also weakly linked to all three subscales. With respect to this
variable set the effect of DRD4 was direct, i.e. it was strongly relevant.
HTR1B showed marked effects only towards the BIS Total score and
towards the Motor subscale. The analysis showed that there was no sta-
tistical interaction between these two variables, which was confirmed by
posterior decomposition analysis [2].

We analyzed partial multivariate strong relevances, because the Bayesian
statistical framework allows the calculation of posteriors for the strong
relevance of variables, pairs of variables, triplets of variables, etc. This is
more flexible than the complete relevance patterns of all the variables, be-
cause it allows the selection of appropriate level of complexity of hypothe-



ses. As shown in Fig 5 the relevance of such subsets of variables exhibit
differently peaked distributions, which are in close correspondence with
feature complexity. These results indicated weak associations for HTR1A
and Sex.

These preliminary results and other applications indicate that Bayesian
networks offers a rich language for the detailed representation of types of
relevance, including causal, acausal, and multi-target aspects. Addition-
ally Bayesian statistics offers an automated and normative solution for
the multiple hypothesis testing problem, thus using high-throughput and
high-performance computing resources posteriors for global(!), detailed
characterization of relevance relations can be estimated in medium sized
problems (i.e. for hundreds of variables). This Bayesian statistical, global
relevance analysis extends the scope of local “causal” discovery methods
and because of the direct interpretation of Bayesian posteriors contrary
to p-values from the frequentist approach, it is an ideal candidate for cre-
ating probabilistic knowledge bases to support off-line meta-analysis and
fusion of background knowledge.

The coherent characterization of the uncertainties over the detailed
types of relevances offers the opportunity to interpret the results of a
Bayesian GAS analysis as a ”Bayesian data analytic knowledge base”.
Currently we are working on techniques to allow the fusion of multiple
Bayesian data analytic knowledge bases in related domains and support
offline meta-analysis.
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