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Abstract. This paper discusses Distributional Logic Programming (Dlp), a for-
malism for combining logic programming and probabilistic reasoning. In particular,
we focus on representing prior knowledge for Bayesian reasoning applications. We
explore the representational power of the formalism for defining priors of model
spaces and delve to some detail on generative priors over graphical models. We
present an alternative graphical model learnt from published data. The model pre-
sented here is compared to a graphical model learnt previously from the same data.

1 Introduction

The ability to represent complex prior knowledge would greatly benefit the application of
Bayesian methods as it can focus computational resources in areas that of particular inter-
est as expressed by the prior. Furthermore, Bayesian methods provide a convenient, clean
framework in which such knowledge can be incorporated. Expressing complex prior knowl-
edge and its incorporation within Bayesian statistics is thus an important and promising
line of research.

Logic programming (LP) is an attractive formalism for representing crisp knowledge.
It is basis on formal mathematical logic lends it strong affinity to the very long tradition in
research in knowledge representation and logical reasoning. However, the boolean nature of
first-order logic sits uncomfortably with modern apporaches to epistemic inference, which
statistical in nature. To remedy this, a number of probabilistic extensions to LP have been
proposed. Of particular interest to this contribution are those that have been introduced
for the purpose of representing Bayesian priors ([5, 1]). Here, we present an extension to
the probabilistic aspects of their formalism based on probabilistic guards which have been
used in more abstract probabilistic languages such as PCCP ([7]).

Currently, biology is an area of scientific knowledge that is expanding at an unprece-
dented rate. Vast volumes of data is being generated and knowledge in the form of scientific
papers is begin accumulated. Invariably, however, statistical analysis is performed ab ini-
tio and knowledge is considered only implicitly in the form of assumptions. These can not
be precise or quantative. By incorporating existing knowledge in a disciplined framework
computational and statistical inference can be guided to the areas that are still lacking ev-
idence and drive the construction of more precise models. Knowledge based data analysis
is [12]

We demonstrate the usefulness of our formalism by applying MCMC inference over
graphical models on a published dataset. For comparison, we use a fairly agnostic prior.
The MCMC consensus graph constructed from ten MCMC chains, is in broad agreement
with that learnt by the boostrapping methods described in [8] and implemented in the
Banjo software [15]. The bootstrapping graph was taken from the literature [16]. The use
of stronger priors would further benefit our approach, where as only simple information,
such as absense/presence of specific edges can be incorporated in most other systems.



2 Preliminaries

A logic program L is a set of clauses of the form Head :- Body defining a number of
predicates. Head is a single positive literal or atom, constructed from a predicate symbol
and a number of term arguments. Each term is a recursively defined structure that might
be an atomic value, a variable or a function constructed by an atomic function symbol and
n term arguments. A query or goal Gi is a conjunction of literals (A(i,1), . . . , A(i,n)) which
the logic engine attempts to refute against the clauses in L. This is done by employing
SLD with a top to bottom scan of the clauses as the rule. Linear resolution at step i will
resolve A(i,1) with the head (Hi) of a matching clause (Mi) and replace it with the body
of the clause. The step at i+ 1 is recursively defined by applying resolution to the newly
formed goal. Matching is via the unification algorithm, which when successful, provides
a substitution θi such that A(i,1)/θi = Hi. A computation terminates when the current
goal is the empty one or a failure to match any clause occurs. The logic engine can be
used to explore unreached parts of the space by returning to the latest matching step and
attempting to find alternative resolution clauses. The full search ends when all alternatives
have been exhausted. In what follows we will use Ai to refer to A(i,1), i.e. the atom used
for the ith resolution step. As an illustrating example of a logic program consider the
following two clauses defining the member/2 relation (also referred to as predicate):

(C1) member(H, [H|T]).
(C2) member(El, [H|T]) :-

member(El, T).

The first clause (C1) states that the head of a list is one of its members, while the
second one states that element El is a member of the list, if it is a member of the tail
(T ) of the list. Lists are convenient recursive structures term structures commonly used
in logic programming to hold a collection of terms. Posed with a query of the form ? −
member(X, [a, b, c]) the LP engine will use SLD resolution which scans the query left to
right and the program top to bottom as to provide all possible answers in the form of
alternative values for X .

2.1 Probability Theory and Logic Programming

Logic programming implements a systematic search of a non-deterministic space. In this
paper we will review some of the difficulties of mixing such spaces with probabilistic
ones and present one way to achieve this. The thesis we propose is that any formalism
which treats probabilities as top-level constructs, must define a single probabilistic space
and in the case of logic programming a clear distribution over Θ. Current approaches to
probabilistic formalisms include: the replacement of non-determinism by a probabilistic
operator, the use of a primitive that appears within limited non-determinism and a clear
separation of the two spaces. First, SLPs [11] under the semantics presented in [5] replace
SLD resolution with sampling over pure programs that only contain stochastic clauses. An
example of the second category is Prism, [14]. It provides a single probabilistic construct
that instantiates an unbound variable from the elements of a list according to the proba-
bility values attached to each element. It was introduced with parameter learning in the



context of PCFGs (Probabilistic Context Free Grammars) and hidden Markov models in
mind. PCLP [13] and clp(pfd(Y) [2] employ constraint programming to, in distinct ways,
create two separate spaces. The non-determinism remains within the clausal level while
the probabilistic is constructed in the constraint store with the constraint solver used to
reason/infer from this information.

3 Syntax

We extend the clausal syntax with probabilistic guards that associate a resolution step to
a probability which is computed on-the-fly. The main intuition is that in addition to the
logical relation a clause defines over the objects in its head arguments it also defines a
probability distribution over aspects of this relation.

Definition 1. Probabilistic clauses in Dlp are a syntactic extension of definite clauses in

LP. Let Expr be an arithmetic expression in which all variables appear in the clause-unique

unary functions of the comma separated tuple GV ars. Let Guard be a goal and PV ars
be a comma separated tuple of variables that appear in Head. A probabilistic clause is

defined by:

Expr : GV ars ·Guard ∼ PV ars : Head :- Body (1)

Arithmetic expressions of clauses defined by (1) will be evaluated at resolution time. In
cases where this can be done successfully, the clauses will be used to define a distribution
over the probabilistic variables (PV ars). The distribution may depend on an arbitrary
number of input terms via calls to the guard.

We also allow goals that appear in the body of clause definitions to be labelled by
a tuple of unary functions each wrapping an arithmetic expression. Each of the unary
functions corresponds to the functions in GV ars. The intuition behind labelled goals in
the body of clauses (Body) is that often probability labels of recursive calls can be easily
computed from their parent call thus the interpreter can avoid recomputing all or some
of the guards. For a single probabilistic predicate all clauses must define the same set of
probabilistic variables. In what follows we let C∼

i denote the set of probabilistic variables
of clause Ci. Comparing to the already introduced member/2 relation, the following is a
probabilistic version pmember/2.

(C3)
1
L

: l(L) · length([H|T], L), 0 < L ∼H:
pmember(H, [H|T]).

(C4) 1−
1
L
: l(L) · length([H|T],L), 0 < L ∼El:

pmember(El, [H|T]) :- l(L-1): pmember(El,T).

These clauses have attached to them expressions which will be computed at resolution
time. (C3) is labelled by 1

L
where L is the length of the input list (as defined by standard

predicate list/2 which is present in all prolog systems). (C4) claims the residual probability.
The recursive call has been augmented to carry forward the value of L as the length of T
is one less than that of the input list and thus we avoid recomputing the guard. Intuitively,
for the query ? − pmember(X,List) where List is a known list, the program defines an
equiprobable distribution over all the possible element selections from the list. The three
corresponding probabilities when List = [a, b, c] are computed as 1

3 ,
2
3×

1
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1
3×

1
2×1. Clauses



(C3) and (C4) are written in full syntax. It is often unnecessary to be as verbose. We will
drop the unary function from variables that are named with the upper case version of
the functor name, that is in our example l(L) reduces to L. We will share guards among
clauses, thus the guard part of (C4) can be removed. We also drop the unary functor from
guard variables in body calls when either the corresponding predicate has a single guarded
variable or a single guarded input variable is involved in an expression. Finally, in the
interest of clarity we introduce guard lines to our programs which factor the guard section
out. The example program is then:

(G1) L ·length(List, L), 0 < L ∼El : pmember(El,List).

(C′

3)
1
L

: G1 : pmember(H, [H|T]).

(C′

4) 1− 1
L

: pmember(El, [H|T]) :-

L-1: pmember(El, T).

A distributional logic program R is the union of a set of definite clauses L and a set of
distributional clauses D, defining the logical and probabilistic parts of the program respec-
tively. D and L must define disjoint sets of predicates. Dlp grew out of the need to extend
SLPs. Having labels that are set numbers has the major advantage that parameter learn-
ing can be done efficiently, [6], but can not describe complex probabilistic dependencies.
For instance, pmember/2, as defined above cannot be capture by a simple stochastic logic
program. The fact that SLPs labels are fixed numbers means that they cannot encode the
uniform choice of a list element in a linear fashion by traversing the list.

4 Priors over graphical models

Hereafter, we will use the terms graphical model and BN, for Bayes nets, interchangably.
A graphical model can be easily represented as a LP term. For instance, the structure of a
BN with nodes 1, 2 and 3, and two parent edges from 1 to 3 and from 2 to 3 corresponds to
the term structure [1− [3], 2− [3]]. (Stochastic) logic programs can be written that define
the space of all models, say all possible BNs with N nodes. The benefit of doing so, is that
the high-level and theoretically sound properties of logic programs can provide a suitable
platform for representing domain knowledge.

One approach to constructing the dependency graph of a BN is by recursively choosing
parents for each of the possible nodes. Care must be taken however as to avoid introducing
cycles in the graph. This method is well suited to situations where prior information
regarding edges in the graph is available. The top level non-stochastic part of the selection
expressed in logic programming is :

(B2) bn([ ], Nds, [ ]). (B1) bn(Nds,BN) : −
(B3) bn([Nd|Nds], AllNds,BN) : − bn(Nds,Nds,BN),

parents of(Nd,AllNds, Pa), no cycles(BN).
BN = [Nd− Pa|BN ],
bn(Nds,AllNds,BN).

Given a list of possible nodes Nds that appear in BN , predicate bn/2 constructs a
candidate graph and then checks that the graph produced includes no cycles. If that is not



the case, the program fails. Predicate bn/3 traverses the nodes selecting parents for each
one of them from AllNds. When an ordering is known over the variables in the BN, its
construction can proceed without checking for cycles. The ordering constraint [8] specifies
that the order of nodes (Nds) is significant and that each node can only have parents from
the section of the ordering that follows it.

(B5) bn([ ], AllNds, [ ]). (B4) bn(Nds,BN) : −
(B6) bn([Nd|Nds], PossPa,BN) : − bn(Nds, [ ], BN).

parents of(Nd, PossPa, Pa),
BN = [Nd− Pa|TBN ],
bn(Nds, [Nd|PossPa], TBN).

Clauses (B4 −B6) provide a compact implementation for the ordering constraint. The
program is also robust in relation to the probabilistic paths associated to the model in-
stances they generate. Each model has a unique non-probabilistic part with regard to this
program segment and it never leads to a failure. On the contrary clauses (B1−B3) lead to
failure and loss of probability mass when a cycle is introduced. This can only be detected
after some probability is assigned to the failed path. It is worth noting that clause (B6)
selects parents for a node from the set of possible parents rather than the set of all nodes.
Also, when the ordering is not known (program B1 − B3) there is no good reason why
child variables should be selected in sequential order. The following program puts the two
ideas in use:

(B8) bn([ ], All, BN,BN). (B7) bn(Nds,BN) : −
(B9) bn(Nds,All, BnSoFar,BN) : − bn(Nds,Nds, [ ], BN).

pmember(Nds,Nd,RemNds),
poss pa(Nd,BnSoFar,All, PossPa),
parents of(Nd, PossPa, Pa),
add(Nd− Pa,BnSoFar,NextBnSF ),
bn(RemNds,All,NextBnSF,BN).

Here the node is selected probabilistically (pmember/3) from the nodes still available.
The selection can be either fair or biased. Clause (B9) uses an auxiliary structure BnSoFar
which accumulates the graph of the BN at the current level. This is used by poss pa/4 to
eliminate cycle introducing parents. Clause (B8) terminates the recursion. Once all nodes
have been assigned parents, the auxiliary structure is unified to the variable of the complete
BN. A number of distributions from the literature can be fitted over the edge selection
that connects children in the BN to their parents. [9] introduced p(BN) ∝ κδ where κ is
a user defined parameter and δ is the number of differing edges/arcs between BN and a
‘prior network’ which encapsulates the user’s prior belief about the network structure. [3]
suggested a generalisation of the above that allows for arbitrary weights for each missing
edge: p(BN) ∝

∑
ij κij . A Dlp can encode such information by simply passing a list of

length ni as as extra argument to the BN constructing clauses. Each sublist is a list of
length nj weights that can be used to call the following predicate :

(B10) Kij : parent edge(PP, [PP |TPa], TPa).
(B11) 1−Kij : parent edge(PP, TPa, TPa).
In the context of learning from expression array data, [17] constructed tabular priors

over the existence of some edges. This is complementary to penalising missing edges. A
similar program to the one presented above can capture such knowledge.
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Fig. 1. 1000 samples from clauses B12-B17. Top left: average family size for r=1, n=5. Top right:
average family size for 4 = 1, n = 10. Bottom left: number of times node i (x-axis) was a parent,
for r = 1, n = 5. Bottom right, as adjacently but for r = 1, n = 10.

Another approach proposed in [8] is that of limiting the number of parents a node
may have. It seems natural that a prior distribution over the parental population maybe
a suitable extension to this and in Dlp it can be written as :

(G2) L· length(PossPa, L1), L is L1− 1
R·

∼ Pa : parents of(PossPa,R, Pa).

(B13) graph([ ], Nds, R,G). (B12) graph(Nds,R,G) : −
(B14) graph([H |T ], Nds,R,G) : − graph(Nds,Nds,R,G).

select(Nd,Nds, PossPa),
parents of(Nd, PossPa, Pa),
G = [H − Pa|TG],
graph(T,Nds,R, TG).

(B15) 1: parents of([ ], R, [ ]) .
(B16)

R
L
: parents of([PP |PPs], R, Pa) : −

Pa = [PP |TPa],
L,R: parent of(PPs,R, TPa).

(B17) 1− R
L
: parents of([ PP |PPs], R, Pa) : −

L,R: parent of(PPs,R, Pa).

Guard (G2) sets up L to the number of possible parents under consideration (the
number of all nodes minus 1) and R to the expected number of parents per family. Clause



(B15) is the base case of the recursion while (B16) adds a possible parent (PP ) to the list
of parents (Pa) and (B14) eliminates the candidate. By setting the selection probability
to R/L we expect R number of parents to be selected. The top part of Figure 1 shows the
average number of family size from 1000 ndependent samples from this prior. There are
two different values of n, the length of all nodes list, 5 and 10 for a single value of r = 1.
The experimental results show that indeed the prior defines a normal distribution for the
average family size with mean eauql to 1. The bottom part of Figure 1 clearly shows that
there is no bias in the selection of parents. The x-axis plots graph nodes and y-axis plots
number of times the nodes were used as parents. Note that clauses B13-B17 define a graph
structure which might include cycles and as such not strictly a BN structure. We did so
as to make the Dlp easier to follow and demonstrate the sampling distribution.

4.1 Likelihood based learning

Bayesian learning methods seek in the posterior distribution for either single models that
maximise some measure or an approximation of the whole posterior. The posterior over
models given some data P (M |D) is proportional to the prior and a likelihood function,
P (M |D) ∝ p(M)P (D|M). Since the space is in all but trivial examples is too large to
enumerate, various approximate methods have been introduced. Variational methods [10]
approximate the inference on the evidence by considering a simpler inference task. Markov
chain Monte Carlo algorithms sample from the posterior indirectly So far we have con-
centrated on building priors that provide access to the choices via probabilistic paths. In
this section we discuss one algorithm that can take advantage of the defined priors and its
application to a real-world machine learning task.

4.2 Metropolis-Hastings

Metropolis-Hastings (MH) algorithms approximate the posterior by stochastic moves through
the model space. A chain of visited model is constructed. At each iteration the last model
added to the chain is used as a base from where a new model M ′ is proposed which is
accepted or rejected stochastically. The distribution with which M ′ is reached from M is
the proposal q(M,M ′) and the acceptance probability is given by

∝
p(M ′), P (M ′|D), q(M,M ′)

p(M), P (M |D), q(M ′,M)

To our knowledge all MH algorithms in the literature, with the exception those based
on SLPs, have distinct functions for computing the prior and the proposal. Standard
MH requires two separate computations. The first is the prior over models: p(M), and
the second is a distribution for proposing a new model M ′ from current model M . The
proposed model is accepted with probability that is proportional to the ratio given above
which also includes the marginal likelihood of the model that measures the goodness of
fit to the data P (M |D)). This often leads to restricting the choices of either the prior [8]
or the proposal [4]. Furthermore, writing two programs that manipulate the same model
space means that the algorithms are hard to extend to other spaces. The MH algorithm
over Dlp requires the construction of a single program, that of the prior.



A generic MH algorithm for SLPs was suggested in [5] and further developed in [1]. The
main idea is to use the choices in the probabilistic path as points from which alternative
models can be sampled. Proposals are thus tightly coupled to the prior and take the form
of a function f such that πM

j = f(πM ) where πM is the path produced for deriving model
M . πj is the point from which M ′ will be sampled. As Dlp also provides a clear connection
between computed instantiations and probabilistic choices the MH algorithm can be fitted
over their priors. Open source software for MCMC simulations over the priors described
here is web available 1.

4.3 Chromatin interaction graph

We ran the MCMCMS system on the data from [16]. A simple prior was used that fits
a gamma distribution over the parents with a mean value of 1.2 for the average family.
The analysis presented in [16] was to build an 80% consensus graph based on repeated
simulated annealing search using the Banjo software [15, 18]. The dataset consists of 4380
rows each representing a possible biding location for each of the 43 chromatin proteins
(columns). We discretised the data as per the original paper by setting the strongest 5%
of the bindings for each protein to 1 and the rest to 0.

We ran 10 chains of 5× 105 iterations each. We then averaged the results in the form
of a graph by including edges that appear more time than the threshold (80%). We will
refer to the graph learnt by our method as M80 and to the graph in [16] as BN80. In Fig.2
we show BN80 with edges that do not appear in M80 highlighted in blue, whereas Fig.3
shows M80 with edges that do not appear in BN80 highlighted in orange. Bidirectional
edges depict averages that could only achieve the threshold for inclusion when considering
both directions of the edge in the Markov chains. For ease of comparison both graphs are
given with the same topology: that of [16]. Note, that this introduces artificial visual bias,
making some new edges in M80 appear as long range effects. The directions of arrows in
BN80 should be ignonred as they are those of M80 except for those edges that are not
present in M80 in which case the order is random.

There are 9 edges that were not in M80, 6 edges that were not in BN80and 40 common
edges. M80 concurs with BN80 on all the major families. For instance the wiring of the
classical heterochromatin family around HP1 is remarkably conserved. Graph M80 also
contains all experimentally validated edges of BN80. That is, the edges of HP1 with HP3
and HP6 and the edges of BRM with JRA, GAF and SU(VAR)3-7.

5 Conclusions

This paper discusses a general programming language for combining logical and proba-
bilistic reasoning in logic programming specially for the purpose of defining prior Bayesian
knowledge. The characterisation is of relevance not only to Dlp but also to other gen-
erative formalisms that combine logic and probability. We have argued that for certain
classes of programs the kind of knowledge that can be represented in a convenient way is
substantially improved. Furthermore, we illustrated via examples on how to write correct
and efficient programs that capture knowledge from the Bayesian learning literature.

1 http://scibsfs.bch.ed.ac.uk/ nicos/sware/dlp/mcmcms/
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Fig. 2. Model BN80, as presented in van Steensel et.al. (Ignoring edge directions.) Blue edges do
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80% of the models. Single direction are for edges over the cut-off at one direction. Orange edges
do not appear in BN80.

We have used an MCMC schema over the probabilistic language to learn a graphical
model from a recently published dataset. The consensus graph learnt by our method is in a



broad agreement (≈ 80%) with a previously published graph. Furthermore the agreement
coincides with the experimentally validated interactions.
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